From: <u>Jump, Christine</u> To: <u>Michael Stephenson</u>; <u>SMITH, MARTIN L</u> Subject: FW: ch 1992 data **Date:** Wednesday, May 07, 2014 11:06:00 AM Attachments: ch 1992 data.pdf Attached is the analytical data for soil samples collected in January 1992 for the RFA. Did the email yesterday provide what you need to get started on Building J work? I forgot to include that I would like to see a schedule for the phase I work before you start, but your response to #19 indicated that you planned to provide that before the work started. Let me know if you have any questions about this RFA sampling data or the Phase I work. Chris Jump, L.G. Waste Remediation and Permitting Branch US EPA, Region 7 jump.chris@epa.gov (913) 551-7141 Mailing address: 11201 Renner Boulevard, Lenexa, KS 66219 ----Original Message----- From: RO-2-3-AWMD-East-X7530@epa.gov [mailto:RO-2-3-AWMD-East-X7530@epa.gov] Sent: Wednesday, May 07, 2014 11:15 AM To: Jump, Christine Subject: ch 1992 data Please open the attached document. It was scanned and sent to you using a Xerox multifunction device. Attachment File Type: pdf, Multi-Page multifunction device Location: RO-2.3-AWMD-East-X7530 Device Name: XRX9C934E040206 For more information on Xerox products and solutions, please visit http://www.xerox.com ## ANALYSIS REQUEST REPORT FOR ACTIVITY: ADF77 02/12/92 09:34:22 DONA, B. ALL REAL SAMPLES AND FIELD Q.C. | | AS | | | | | END | | |----------------|--|--------------------------------------|---|----------------------------------|-----------|---------------------------|--| | | KANSAS | | | | | BEG.
TIME | 0C-1213077 8888
000044-0212024
0000044-0212024 | | | A60 | | | | | BEG.
DATE | 000000000000000000000000000000000000000 | | | HITA
PROJECT: | | | | | LAY- B
T ER D | 000000000000 | | | WIC | | 00/00
21 DAYS | O DAYS | | SEC | | | | LOCATION:
LYSIS | | 00/00
IS | | | AIRS/
STORET
LOC NO | | | | ANA | | DATE: | TIME | | STATE | KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KANSAS
KA | | | INC.
IN HOUSE | | FINAL REPORT TRANSMITTED DATE: EXPECTED REPORT TURNAROUND TIME | ACTUAL REPORT TURNAROUND TIME IS | | | ****** | | | | 01/16/92 | RT TRAN | ORT TUR | | CITY | | | | N RECYCLERS | | AL REPO
ECTED R | UAL REP | | ** | A PAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAP | | | HYDROCARBON RECYCLERS,
TYPE: SAMPLING ~ | 5 1/31/92
/ED DATE: | FIN | ACTI | | SAMPLE / | | | | Ę. | REPORT DUE DATE IS 1 | Ø S | | | 0,01 | A OF SITE OF VAULT SITE SITE | | | ⊢ | REPORT DUE DATE
ALL SAMPLES RECE | 02/10/92
30 DAYS | 25 DAYS | | 7 | AREA OF JLT SDGE OF V SOLA V OF SITE REA OF SITE | | | DESCRIP
STATUS: | REPO
ALL | | | | DESCRIPTION | SOFE OF VAULT ATE OF CONDOLA END OF GONDOLA M. W. AREA OF M. CRUSHER AREA LL AREA SAMPLER FOR SS-9 | | | ADF77 | 2/15/92. | ALL DATA APPROVED BY LABO DATE:
EXPECTED LABO TURNAROUND TIME IS | ACTUAL LABO TURNAROUND TIME IS | SITE: | DESC | SG-8 S.E., N.E. AREA N.E. EDGE OF VAULT S-DUPLICATE N.E. EDGE O S. EAST END OF GONDOLA S.G. M. W. AREA OF S 10. DRUM CRUSHER AREA 11. STILL AREA 22. S.W. OPEN AREA OF SI BLANK N.W. SAMPLER FOR SS-9 BLANK N.W. AREA SILANK N.W. AREA N.W. AREA N.W. AREA N.W. AREA SILANK N.W. AREA N.W. AREA N.W. AREA | | | ITY: | 8 | OVED BY
TURNAR | URNAROU | S) | | \$55-2. SG-8 \$55-3. N.E. \$55-3. N.E. \$55-3. SG-6 \$55-10. STI \$55-11. STI \$55-12. \$55-12 | | * FINAL REPORT | ACTIVITY: | LABO DUE DATE IS
INSPECTION DATE: | TA APPR
ED LABO | LABO T | ODE: | Σ. | ANANANANAS** | | FINAL | FY: 92 | LABO DI | ALL DA' | ACTUAL | SITE CODE | SAMP. QCC | 00000000000000000000000000000000000000 | | * | | | | | | S | 1/1/// | END. TIME | ANALYTICAL RESULTS/MEASUREMENTS INFORMATION: | COMPOUND = MGP (MEDIA-GROUP-PARAMETER) CODE AND NAME UP
THE MEASURED CONSTITUENT OR CHARACTERISTIC
OF EACH SAMPLE
UNITS = SPECIFIC UNITS DIN WHICH RESULTS ARE REPORTED: | GFS = CUBIC FEET PER SECOND GPM = GALLONS PER MINUTE IN = INCHES IDENTIFICATION KG = KILOGRAM LITER | LB = POUNDS
MG = MILLIGRAMS (1 X 10-3 GRAMS)
MGD = MILLIONS PER DAY
MPH = MILES PER HOUR
MV = MILLIYOLT
MVF = MALE/FEMALE | M2 = SQUARE METER M3 = CUBIC METER NA = NOT APPLICABLE NG = NANGRAMS (1 X 10-9 GRAMS) NTU = NANGRAMS (1 X 10-12) CURRIES PER LITER PC/L = PICO (1 X 10-12) CURRIES PER LITER PG = PICOGRAMS (1 X 10-12) GRAMS | SCM = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SQ = STANDARD UNITS (PH) UG = MICROGRAMS (1 X 10-6 GRAMS) | U/CC2 = MICROMANS/CM (CONDUCTIVITY DATES) U/CC2 = MICROGRAMS PER 100 SQUARE CENTIMETERS U/CM2 = MICROGRAMS PER SQUARE CENTIMETER 1000G = 1000 GALLONS 1000G = DOCTIVE ONE SATIVE | DATA QUALIFIERS = SPECIFIC CODES USED IN CONJUNCTION WITH DATA VALUES TO PROVIDE ADDITIONAL INFORMATION ON THE REPORTED RESULTS. OR USED | BLANK — IF FIELD IS BLANK, NO REMARKS OR INTERPRETATION OF THAT THE REPORTED DATA, THIS MEANS THAT THE VALUES HAVE BEEN REVIEWED AND FOUND TO BE ACCEPTABLE FOR USE. I = INVALID SAMPLE/DATA — VALUE NOT REPORTED IT AND TO BE ACCEPTABLE FOR USE. | K = ACTUAL VALUE OF SAMPLE IS < VALUE REPORTED L = ACTUAL VALUE OF SAMPLE IS > VALUE REPORTED M = DETECTED BUT BELOW THE LEVEL OF REPORTED VALUE FOR ACCURATE DUANTIFICATION | O = PARAMETER NOT ANALYZED U = ACTUAL VALUE OF SAMPLE IS < THE MEASUREMENT DETECTION LIMIT (REPORTED | | |----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--| |) | mar v | H < | \vdash | L = MEASURED VALUE FOR LAB BUPLICATE M = MEASURED VALUE FOR LAB BLANE N = MEASURED VALUE FOR DUPLICATE FIELD SPIKE P = MEASURED VALUE FOR PERFORMANCE STANDARD R = CONCENTRATION RESULTING FROM LAB SPIKE S = MEASURED VALUE FOR LAB SPIKE T = TRUE VALUE FOR DUPLICATE LAB SPIKE W = MEASURED VALUE FOR DUPLICATE LAB SPIKE | ш | ш | ΣZ | Z FFWWO | | | | | TY: 2-ADF77 | |-------------| | ACTIVI | | REPORT | | DETAIL | | REQUEST | | ANALYSIS | | COMPOUND | UNITS | 001 | 005 | 0020 | ZD | . 600 | 004 | | |-------------------------------------------|----------|--------|-------|------|-------|-------|------|-------| | SGO7 SOLIDS. PERCENT | .% | | 84.1 | 82.3 | 83.5 | | 83.0 | | | 1 94 | . UG/KG: | 140.0 | 23.0 | | 30.U | 36.U | | 35.0 | | | . UG/KG: | 280.0 | 47.0 | | 60.U | 73.0 | | 0.69 | | | . UG/KG: | 210.0 | 35.0 | - | 45.U | 54.U | | 52.U | | SVO6 CHLOROETHANE, BY GC/MS | . UG/KG: | 210.U | 35. U | | 45.U | 54.U | | 52.U | | | . UG/KG: | 140.0 | 23.0 | | 30. U | 36.U | | 35.U | | SVOB DICHLOROETHYLENE,1,1, BY GC/MS | . UG/KG: | 70.U | 12.0 | | 15.0 | 18.U | | 17.U | | SVO9 DICHLOROETHANE,1,1, BY GC/MS | . UG/KG: | 70.U | 12.0 | | 15.0 | 18.U | | 17.U | | SV10 DICHLOROETHYLENE, TRANS-1,2 | . UG/KG: | 70.0 | 12.U | | 15.0 | 18.0 | | 17.U | | | UG/KG | 70.U | 12.U | | 15.0 | 18.0 | | 17.U | | SV12 DICHLOROETHANE, 1, 2, BY GC/MS | . UG/KG: | 70.U | 12.U | | 15.U | 18.U | | 17.0 | | SV13 TRICHLOROETHANE, 1, 1, 1-, BY GC/MS | . UG/KG: | 70.U | 12.U | | 15.0 | 18.U | | 17.U | | SV14 CARBON TETRACHLORIDE, BV GC/MS | . UG/KG | 70.U | 12.U | | 15.0 | 18.U | | 17.U | | SV15 BROMODICHLOROMETHANE, BV GC/MS | . UG/KG: | 70.U | 12.U | | 15.0 | 18.U | | 17.U | | SV16 DICHLOROPROPANE, 1, 2, BY GC/MS | . UG/KG: | 70.U | 12.U | | 15.U | 18 U | | 17.U | | SV17 BENZENE, BY GC/MS | UG/KG | 70 . U | 12.U | | 15.U | 18°U | | 17.U | | SV18 DICHLOROPROPYLENE, TRANS-1,3 | . UG/KG | 70.U | 12.U | | 15.0 | 18 U | | 17.0 | | SV19 TRICHLOROETHYLENE, BY GC/MS | . UG/KG | 200. | 12.U | | 15.U | 18.U | | 17.0 | | SV20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS | . UG/KG: | 70.U | 12.U | | 15.U | 18.U | | 17.0 | | SV21 DIBROMOCHLOROMETHANE, BV GC/MS | . UG/KG: | 70.U | 12.U | | 15.U | 18.U | | 17.U | | SV22 TRICHLOROETHANE, 1, 1, 2-, BV GC/MS | . UG/KG: | 70.U | 12.U | | 15.0 | 18.U | | 17.U: | | SV24 BROMOFORM, BY GC/MS | . UG/KG: | 70 . U | 12.U | | 15.0 | 18.U | | 17.U: | | | . UG/KG: | 70.U | 12.U | | 15.0 | 140. | | 38. | | SV26 TOLUENE. BY GC/MS | : UG/KG: | 140. | 12.U | | 15.0 | 18.U | | 17.U | | SV27 TETRACHLOROETHANE,1,1,2,2, BY GC/MS | . UG/KG: | 70.U | 12.U | | 15.0 | 18.U | 1 | 17.U | | SV28 CHLOROBENZENE, BY GC/MS | . UG/KG: | 70.0 | 12.0 | | 15.0 | 18.U | | 17.U: | | | <u> </u> | | | 1 | | | | | | 4 | ANALYSIS REQUE | REQUEST DETAIL REPORT | ACTIVITY: 2-ADF77 | 2-ADF77 | | VALIDATED DATA | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-------------------|---------|-------|----------------| | COMPOUND | UNITS | 001 | 002 | 002D | 003 | 004 | | SV29 FTHY! BENZENE BY GC/MS | | 180. | 12.U | 15.U | 18.0 | 17.0 | | SV3O ACETONE BY GC/MS | : UG/KG: | 220.U | 23.0 | 30. U | 36. U | 35.0 | | SV31 CARBON DISULFIDE. BY GC/MS | | 70.U | 12.U | 15.0 | 18.U | 17.0 | | SV32 MFTHYL ETHYL KETONE (2-BUTANONE) | | 140.0 | 23.0 | 30.0 | 36.U | 35.0 | | SV3Z 2-HFXANONF | . UG/KG | 140.0 | 23.0 | 30.0 | 36. U | 35.0 | | CVAR ALMETHYL -2-DENTANONF | ::: UG/KG: | 140.0 | 23.0 | 30.U | 36. U | 35.U | | DVOC 4 METHIC C TOTAL CONTROL | : UG/KG: | 70.0 | 12.0 | 15.0 | 18.0 | 17.U | | SV30 STARENCE, DT GC/MS | - ! | 17 | 12.0 | 15.0 | 18.U | 17.0 | | CVA2 DICH ORDETHYLENE 1 2 TOTAL | UG/KG: NA | AN: O | 0 | NA 0 | NA | NA 0 | | 2201 SAMPLE NIMBER | NA 001 | | | 002 | 003 | 004 | | ZZOZ ACTIVITY CODE | | ADF77 AD | ADF77 | ADF77 | ADF77 | ADF77 | | | | | | | | | | : 2-ADF77 | |-----------| | ACTIVITY | | REPORT | | DETAIL | | REQUEST | | ANALYSIS | | SSO FOREINT X 79 8 77.4 79.6 97.8 | COMPOUND | UNITS 005 | 900 | 000 | 009F | 101 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|-----|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PHENOL, BY GC/MS UG/KG, 410 CARBAZOLE UG/KG, 10 ETHER, BIS (2-CHLOROETHYL), BY GC/MS UG/KG, 10 2-CHLOROPHENOL UG/KG, 410 DICHLOROBENZENE, 1, 3-, BY GC/MS UG/KG, 410 DICHLOROBENZENE, 1, 2-, BY GC/MS UG/KG, 410 CRESOL, ORTHOC/2-METHYLPHENOL) UG/KG, 410 LETHER, BIS (2-CHLOROTSORROPYL), BY GC/MS UG/KG, 410 N-NITROSEDIPROPYLAMINE UG/KG, 410 HEXACHLOROETHANE, BY GC/MS UG/KG, 410 NITROBENZENE, BY GC/MS UG/KG, 410 NITROBENZENE, BY GC/MS UG/KG, 410 METHANE, BY GC/MS UG/KG, 410 METHANE, BY GC/MS UG/KG, 410 METHANE, BY GC/MS UG/KG, 410 UG/ | SOLIDS, | .62 | 7. | | | | | CARBAZOLE UG/KG NA ETHER. BIS(2-CHLOROETHYL). BY GC/MS UG/KG 410 2-CHLOROPHENOL UG/KG 410 DICHLOROBENZENE.1.3 BY GC/MS UG/KG 410 DICHLOROBENZENE.1.4- UG/KG 410 DICHLOROBENZENE.1.2 BY GC/MS UG/KG 410 DICHLOROBENZENE.1.2 BY GC/MS UG/KG 410 DICHLOROBENZENE.1.2 BY GC/MS UG/KG 410 CRESOL. ORTHO(2-METHYLPHENOL) UG/KG 410 N-NITROSODIPROPYLAMINE BY GC/MS UG/KG 410 HEXACHLOROETHANE. BY GC/MS UG/KG 410 NITROPHENOL.2- UG/KG 410 UG/KG 410 BENZOIC ACID. BY GC/MS UG/KG 410 UG/KG 410 BENZOIC ACID. BY GC/MS UG/KG 410 UG/KG 410 CHLOROBENZENE.1.2.4. BY GC/MS UG/KG 410 UG/KG 410 CHLOROANILINE.4- UG/KG UG/KG | PHENOL, BY | G/KG: | . 0 | | | | | Career C | CARBAZOLE | G/KG: | 0 | | | | | 2-CHLOROBENZENE 1, 3- BY GC/MS DICHLOROBENZENE 1, 4- BENNYL ALCOHOL DICHLOROBENZENE 1, 4- BENNYL ALCOHOL DICHLOROBENZENE 1, 4- BENNYL ALCOHOL DICHLOROBENZENE 1, 2- BY GC/MS DICHLOROBENZENE 1, 2- BY GC/MS DICHLOROBENZENE 1, 2- BY GC/MS UG/KG 410 41 | ETHER BIS(2-CHLOROETHYL), BY | G/KG: | n | | | | | DICHLOROBENZENE 1, 3- BY GC/MS UG/KG 410 DICHLOROBENZENE 1, 4- UG/KG 410 BENZYL ALCOHOL UG/KG 410 DICHLOROBENZENE 1, 2- BY GC/MS UG/KG 410 CRESOL ORTHO(2-METHYLPHENOL) UG/KG 410 CRESOL PARA-(4-METHYLPHENOL) UG/KG 410 N-NITROSODIPROPYLAMINE UG/KG 410 N-NITROSODIPROPYLAMINE UG/KG 410 N-NITROSODIPROPYLAMINE UG/KG 410 NITROBENZENE BY GC/MS UG/KG 410 DIMETHYLPHENOL 2- WBY GC/MS UG/KG 410 NITROPHENOL 2- WBY GC/MS UG/KG 410 METHANE BIS(2-CHLOROETHYOXY), BY GC/MS UG/KG 410 DIMETHYLPHENOL 2- WBY GC/MS UG/KG 410 Z-4-DICHLOROBENZENE 1, 2- 4, BY GC/MS UG/KG 410 TRICHLOROBENZENE 1, 2- 4, BY GC/MS UG/KG 410 CHLOROANILINE 4- UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL 4-CHLORO-3-METHYL UG/KG 410 PHENOL 4-CHLORO-3-METHYL UG/KG 410 | SSO4 2-CHLOROPHENOL | G/KG: | n | | | | | DICHLOROBENZENE 11,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- 1,4- | DICHLOROBENZENE, 1, 3-, BY | G/KG: 4 | . 0 | | | | | DECHLOROBENZENE.1,2-, BY GC/MS UG/KG 410 | SSO6 DICHLOROBENZENE, 1, 4- | 3/KG: 4 | n | | | | | DICHLOROBENZENE.1, 2-, BY GC/MS UG/KG 410 CRESOL. ORTHO(2-METHYLPHENOL) UG/KG 410 ETHER. BIS(2-CHLOROISOPROPYL). BY GC/MS UG/KG 410 CRESOL. PARA—(4-METHYLPHENOL) UG/KG 410 N-NITROSODIPROPYLAMINE UG/KG 410 HEXACHLOROETHANE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 BENZOIC ACID. BY GC/MS UG/KG 410 BENZOIC ACID. BY GC/MS UG/KG 410 BENZOIC ACID. BY GC/MS UG/KG 410 CA-DICHLOROPHENOL UG/KG 410 TRICHLOROBENZENE.1.2.4. BY GC/MS UG/KG 410 CHLOROBANILINE. 4- UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL. 4-CHLORO-3-METHYL UG/KG 410 | SSO7 BENZYL ALCOHOL | G/KG: 41 | n | | | | | CRESOL, ORTHO(2-METHYLPHENOL) UG/KG 410 CRESOL, PARA-(4-METHYLPHENOL) UG/KG 410 CRESOL, PARA-(4-METHYLPHENOL) UG/KG 410 N-NITROSODIPROPYLAMINE UG/KG 410 HEXACHLOROETHANE, BY GC/MS UG/KG 410 NITROBENZENE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 BENZOIC ACID, BY GC/MS UG/KG 410 BENZOIC ACID, BY GC/MS UG/KG 410 CA-DICHLOROPHENOL UG/KG 410 TRICHLOROBENZENE., 1.2.4, BY GC/MS UG/KG 410 CHLOROANILLINE.4- UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL.4-CHLORO-3-METHYL UG/KG 410 | DICHLOROBENZENE.1.2-, | G/KG: 41 | | | | | | ETHER.BIS(2-CHLOROISOPROPYL), BY GC/MS UG/KG 410 | SSO9 CRESOL, ORTHO(2-METHYLPHENOL) | 41 | n | | | | | UG/KG 410 UG/K | | . UG/KG: 41 | . 0 | | | - 23-23 | | N-NITROSODIPROPYLAMINE UG/KG 410 HEXACHLOROETHANE. BY GC/MS UG/KG 410 NITROBENZENE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 NITROPHENOL, 2-4, BY GC/MS UG/KG 410 DIMETHYLPHENOL, 2-4, BY GC/MS UG/KG 410 BENZOIC ACID, BY GC/MS UG/KG 410 BENZOIC ACID, BY GC/MS UG/KG 410 CA-DICHLOROPHENOL UG/KG 410 TRICHLOROBENZENE, 1, 2, 4, BY GC/MS UG/KG 410 CHLOROBUTADIENE, BY GC/MS UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | SS11 CRESOL, PARA-(4-METHYLPHENOL) | 41 | . 0 | | | | | HEXACHLOROETHANE, BY GC/MS UG/KG 410 NITROBENZENE, BY GC/MS UG/KG 410 ISOPHORONE, BY GC/MS UG/KG 410 NITROPHENOL, 2-4, BY GC/MS UG/KG 410 DIMETHYLPHENOL, 2-4, BY GC/MS UG/KG 410 BENZOIC ACID, BY GC/MS UG/KG 410 CA-DICHLOROPHENOL UG/KG 410 TRICHLOROBENZENE, 1, 2, 4, BY GC/MS UG/KG 410 CHLOROANILINE, 4- UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | SS12 N-NITROSODIPROPYLAMINE | 4 | . 0 | | | | | ISOPHORONE. BY GC/MS UG/KG 410 ISOPHORONE. BY GC/MS UG/KG 410 NITROPHENOL. 2- UG/KG 410 DIMETHYLPHENOL. 2-4, BY GC/MS UG/KG 410 DIMETHYLPHENOL. BY GC/MS UG/KG 410 METHANE. BIS(2-CHLOROETHYOXY), BY GC/MS UG/KG 410 2.4-DICHLOROPHENOL UG/KG 410 APPHTHALENE. BY GC/MS UG/KG 410 CHLOROANILINE, 4- UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | SS13 HEXACHLOROETHANE, BY GC/MS | | . 0 | | | | | ISOPHORONE | SS14 NITROBENZENE, BY GC/MS | /KG 41 | D | | | | | DIMETHYLPHENOL, 2- DIMETHYLPHENOL, 2, 4, BY GC/MS BENZOIC ACID. BY GC/MS WETHANE. BIS(2-CHLOROETHYOXY), BY GC/MS UG/KG 410 2.4-DICHLOROBENZENE, 1, 2, 4, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | SS15 ISOPHORONE, BY GC/MS | /KG 4 | | | - | | | BENZOIC ACID, BY GC/MS BENZOIC ACID, BY GC/MS WETHANE. BIS(2-CHLOROETHYOXY), BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 UG/KG 410 | SS16 NITROPHENOL, 2- | | n | | | ## THE PROPERTY AND ADDRESS OF ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND PRO | | METHANE BIS(2-CHLOROETHYOXY), BY GC/MS UG/KG 410 2.4-DICHLOROPHENOL TRICHLOROBENZENE, 1, 2, 4, BY GC/MS UG/KG 410 NAPHTHALENE, BY GC/MS UG/KG 410 CHLOROANILINE, 4- HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | SS17 DIMETHYLPHENOL, 2,4, BY GC/MS | 4 | 0 | | | | | METHANE. BIS(2-CHLOROETHYOXY), BY GC/MS: UG/KG: 410 2.4-DICHLOROBENZENE, 1, 2, 4, BY GC/MS: UG/KG: 410 TRICHLOROBENZENE, 1, 2, 4, BY GC/MS: UG/KG: 410 CHLOROANILINE, 4- HEXACHLOROBUTADIENE, BY GC/MS: UG/KG: 410 PHENOL, 4-CHLORO-3-METHYL: UG/KG: 410 | BENZOIC ACID. | N | . 0 | | | | | TRICHLOROPHENOL TRICHLOROBENZENE, 1, 2, 4, BY GC/MS UG/KG 410 UG/KG 410 UG/KG 410 UG/KG 410 UG/KG 410 HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | METHANE BIS(2-CHLOROETHYOXY), BY | | | | | | | NAPHTHALENE, BY GC/MS UG/KG 410 UG/KG 410 CHLOROANILINE, 4- HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG 410 | | /KG: | . 0 | | | | | CHLOROANILINE, 4- CHLOROANILINE, 4- HEXACHLOROBUTADIENE, BY GC/MS PHENOL, 4-CHLORO-3-METHYL UG/KG: 410 | TRICHLOROBENZENE, 1, 2, 4, BY | /KG:41 | | | | | | CHLOROANILINE, 4- HEXACHLOROBUTADIENE, BY GC/MS UG/KG 410 PHENOL, 4-CHLORO-3-METHYL UG/KG: 410 | NAPHTHALENE, BY | /KG: 4 | . n | | | | | HEXACHLOROBUTADIENE, BY GC/MS : UG/KG: 410 PHENOL, 4-CHLORO-3-METHYL : UG/KG: 410 | | /KG: | 0 | | | | | PHENOL, 4-CHLORO-3-METHYL | HEXACHLOROBUTADIENE, | /KG: 41 | . 0 | | | | | | SS25 PHENOL, 4-CHLORO-3-METHYL | /KG | n | | | | | | | | | | | | | ITY: 2-ADF77 | |--------------| | ACTIV | | REPORT | | DETAIL | | REQUEST | | ANALYSIS | | COMPOUND | UNITS 005 | | 900 | 200 | 009F | 101 | |------------------------------------------|---------------|--------|-----|-----|----------------------------------------------|-----| | SS26 2-METHYLNAPHTHALENE | . UG/KG: 410 |) | | | | | | SS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS | . UG/KG: 410 | n | | | | | | SS28 TRICHLOROPHENOL, 2, 4,6 | . UG/KG: 2100 | n | | | | | | SS29 TRICHLOROPHENOL, 2, 4, 5 | : UG/KG: 410 | n | | | | | | SS30 2-CHLORONAPHTHALENE | : UG/KG: 410 | Ω | | | | | | SS31 NITROANILINE, 2- | . UG/KG: 2100 | n | | | | | | SS32 PHTHALATE, DIMETHYL, BV GC/MS | . UG/KG: 410 | n | | | | | | SS33 ACENAPHTHYLENE, BY GC/MS | . UG/KG: 410 | Э | | | | | | SS34 NITROANILINE,3- | UG/KG:2100 | Э | 4 | | | | | SS35 ACENAPHTHENE, BY GC/MS | UG/KG:410 | ח | | | | | | SS36 DINITROPHENOL, 2, 4, BY GC/MS | UG/KG:2100 | n | | | | | | SS37 NITROPHENOL, 4- | UG/KG:2100 | n | | | | | | SS38 DIBENZOFURAN | . UG/KG: 410 | n | | | | | | SS39 DINITROTOLUENE, 2,4, BY GC/MS | . UG/KG: 410 | n | | | | | | SS40 DINITROTOLUENE, 2, 6 | UG/KG: 410 |
n | | | | | | SS41 PHTHALATE, DIETHYL, BY GC/MS | UG/KG:410 | ח | | | _ | | | SS42 ETHER, 4-CHLOROPHENYL PHENYL | . UG/KG: 410 | n | | | | | | SS43 FLUORENE, GC/MS | UG/KG:410 |
n | | | | | | SS44 NITROANILINE.4- | UG/KG: 2100 | n | | | | | | SS45 PHENOL, 4, 6-DINITRO-2-METHYL | UG/KG:410 |)
) | | | | | | SS46 N-NITROSODIPHENYLAMINE, BY GC/MS | . UG/KG: 410 | | | | | | | SS47 ETHER, 4-BROMOPHENYL PHENYL | . UG/KG: 410 | n | | | | | | SS48 HEXACHLOROBENZENE, BY GC/MS | . UG/KG: 410 | n | | | | | | SS49 PENTACHLOROPHENOL, BY GC/MS | .UG/KG:2100 | n | | | ه دو ده دو دید دی چل که صحت ک ک کیا دل دی کا | | | SSSO PHENANTHRENE, BY GC/MS | : UG/KG: 410 | n | | | | | | SS51 ANTHRACENE, BY GC/MS | . UG/KG: 410 | n | | | | | | | | | | | | | | /: 2-ADF77 | |------------| | ACTIVITY | | REPORT | | DETAIL | | REQUEST | | ANALYSIS | | COMPOUND | UNITS | 005 | 900 | 200 | 009F | 101 | |---|--------------|--------|------|------|--------|-----| | SSS2 PHTHALATE, DI-N-BUTYL-, BY GC/MS | . UG/KG: 410 | n | | | | | | SSS3 FLUORANTHENE, BY GC/MS | UG/KG: 410 | n | | | | | | SS54 PYRENE, BY GC/MS | . UG/KG: 410 | n | | | | | | SSS5 PHTHALATE, BUTYL BENZYL | UG/KG: 410 | n | | * | | | | SSS6 DICHLOROBENZIDINE, 3,3' | UG/KG: 830 | n | | | | | | SS57 ANTHRACENE, BENZO(A), BY GC/MS | . UG/KG: 410 | n | | | | | | SS58 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS | UG/KG:410 | n | | | | | | SS59 CHRYSENE, BY GC/MS | . UG/KG: 410 | n | F | | | | | SS60 PHTHALATE, DI-N-OCTYL-, BY GC/MS | UG/KG: 410 | n | | | | | | SS61 FLUORANTHENE, BENZO(B), BY GC/MS | UG/KG: 410 | n | | | | | | SS62 FLUORANTHENE, BENZO(K), BY GC/MS | . UG/KG: 410 | n | | | | | | SS63 PYRENE, BENZO(A), BY GC/MS | UG/KG: 410 | n | | | | | | SS64 PYRENE, INDENO(1,2,3-CD) | . UG/KG: 410 | ח | | | | | | SS65 ANTHRACENE, DIBENZO(A.H), BY GC/MS | . UG/KG: 410 | n | | | | | | SS66 PERYLENE, BENZO(G, H, I), BY GC/MS | UG/KG: 410 | ם | | | | | | SVO3 CHLOROMETHANE, BY GC/MS | UG/KG | 57.0 | 37.U | 31.U | 1 16.U | | | SVOA BROMOMETHANE, BY GC/MS | UG/KG | 110.U | 74.0 | 61.0 | 32.U | | | SVOS VINYL CHLORIDE, BY GC/MS | UG/KG: | 85.U | 56.U | 46.U | 24.0 | | | SVO6 CHLOROETHANE. BY GC/MS | UG/KG | 85.0 | 56.U | 46.U | 24.0 | | | SVO7 METHYLENE CHLORIDE (DICHLOROMETHANE) | UG/KG | 1100.U | 37.U | 31.0 | 16.0 | | | SVOB DICHLOROETHYLENE,1,1, BY GC/MS | UG/KG | 63.0 | 19.0 | 15.U | 8.00 | | | SVO9 DICHLOROETHANE, 1, 1, BY GC/MS | UG/KG | 620. | 19.U | 15.0 | 8.00 | | | SV10 DICHLOROETHYLENE, TRANS-1,2 | UG/KG: | 120. | 19.0 | 15.0 | 8.00 | | | SV11 CHLOROFORM, BY GC/MS | UG/KG | 29.0 | 19.U | 15.0 | 8.00 | | | SV12 DICHLOROETHANE, 1, 2, BV GC/MS | UG/KG | 63.0 | 19.0 | 15.0 | 8.00 | | | SV13 TRICHI DROFTHANE 1.1.1- BY GC/MS | .UG/KG: | .006 | 19.0 | 15.0 | 8.00 | | | ACTIVITY: 2-ADF77 | |-------------------| | REPORT | | DETAIL | | REQUEST | | ANALYSIS | | . COMPOUND | UNITS | 900 | 900 | /00 | 1800 | 0 | |--|-----------|--------|-------|------|------|------| | SV14 CARBON TETRACHLORIDE, BY GC/MS | | 29.0 | 19.0 | 15.0 | 8.00 | | | SV15 BROMODICHLOROMETHANE, BY GC/MS | | 29.U | 19.U | 15.0 | 8.0U | | | SV16 DICHLOROPROPANE, 1,2, BY GC/MS | | 29.0 | 19.0 | 15.0 | 8.00 | | | | | 29.U | 19.0 | 15.0 | 8.00 | | | SV18 DICHLOROPROPYLENE, TRANS-1,3 | | 29.0 | 19.0 | 15.U | 8.00 | | | SV19 TRICHLOROETHYLENE, BY GC/MS | | 4500. | 37. | 110. | 8.0U | | | SV20 DICHLOROPROPYLENE, CIS-1, 3, BY GC/MS | | 29.0 | 19.U | 15.0 | 8.00 | | | SV21 DIBROMOCHLOROMETHANE, BY GC/MS | UG/KG: | 29.0 | 19.U | 15.0 | 8.00 | | | SV22 TRICHLOROETHANE, 1, 1, 2-, BY GC/MS | | 29.0 | 19.0 | 15.Ս | 8.00 | | | SV24 BROMOFORM, BY GC/MS | | 29.0 | 19.0 | 15.U | 8.00 | | | SV25 TETRACHLOROETHYLENE, BY GC/MS | | 29000. | 200. | 770. | 8.00 | | | SV26 TOLUENE, BY GC/MS | | 70. | 19.0 | 15.U | 8.00 | | | SV27 TETRACHLOROETHANE, 1,1,2,2, BY GC/MS | UG/KG: | 29.0 | 19.U | 15.U | 8.00 | | | SV28 CHLOROBENZENE, BY GC/MS | . UG/KG | 29.0 | 19.U | 15.U | 8.0U | 8 | | SV29 ETHYL BENZENE, BY GC/MS | UG/KG: | 54. | 19.U | 15.0 | 8.00 | | | SV30 ACETONE, BY GC/MS | | 130.U | 37.U | 31.0 | 16.U | | | SV31 CARBON DISULFIDE, BY GC/MS | | 29.U | 19.U | 15.0 | 8.0U | | | SV32 METHYL ETHYL KETONE (2-BUTANONE) | UG/KG | 80.U | 37.U | 190. | 16.0 | | | SV34 2-HEXANONE | UG/KG | 57.U | 37.U | 31.0 | 16.0 | | | SV35 4-METHYL-2-PENTANONE | UG/KG | 57.U | 37.U | 31.0 | 16.0 | | | SV36 STYRENE, BY GC/MS | UG/KG | 29.U | 19.U | 15.0 | 8.00 | | | SV37 XYLENES, TOTAL, BY GC/MS | : UG/KG: | 200. | 19.0 | 15.0 | 8.00 | | | SV43 DICHLOROETHYLENE,1,2, TOTAL | UG/KG: NA | O NA | N. O | O NA | 0 | | | WVO3 CHLOROMETHANE, BY GC/MS | 1/9n | | | | | 10.U | | WVO4 BROMOMETHANE, BY GC/MS | 1/9n | | | | | 20.U | | WVOR VINYL CHIORIDE BY GC/MS | ng/L | | • • • | .9. | | 15.U | | ANAL | ANALYSIS REQU | REQUEST DETAIL REPORT | | ACTIVITY: 2-ADF77 | | VALIDATED DATA | |---|-----------------|-----------------------|-----|-------------------|------|----------------| | COMPOUND | UNITS | 005 | 900 | 007 | 009F | 101 | | WVO6 CHLOROETHANE. BY GC/MS | :: _: | | | | | 15.0 | | WVO7 METHYLENE CHLORIDE (DICHLOROMETHANE) | : | | | | | 10.U | | WVOR DICHLOROETHYLENE.1.1 |
NG/L | | | | | 5.00 | | | | | | | | 5.00 | | WV10 DICHLOROETHYLENE, TRANS, 1, 2- | :: ne/L | | | | | 5.00 | | WV11 CHLOROFORM, BY GC/MS | -::
: 06/L : | | | | | 7.8 | | WV12 DICHLOROETHANE, 1, 2, BY GC/MS | | | | | | 5.00 | | | | | | | 0. | 5.00 | | WV14 CARBON TETRACHLORIDE, BY GC/MS | | | | | | 5.00 | | WV15 BROMODICHLOROMETHANE, BY GC/MS | 1/9n | | | | | 5.8 | | WV16 DICHLOROPROPANE, 1, 2, BY GC/MS | | | | | | 5.00 | | | - 1/9n | | | | | 5.00 | | WV19 TRICHLOROETHYLENE | | | 340 | | | 5.00 | | WV20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS | | | | | | 5.00 | | WV21 DIBROMOCHLOROMETHANE, BY GC/MS | | | | | | 5.00 | | WV22 TRICHLOROETHANE,1,1,2-, BY GC/MS | | | | | | 5.00 | | WV24 BROMOFORM, BY GC/MS | 1/9n | | | | | 5.00 | | WV25 TETRACHLOROETHYLENE | | | | | | 5.00 | | WV26 TOLUENE, BY GC/MS | | | | | | 5.00 | | WV27 TETRACHLOROETHANE,1,1,2,2, BY GC/MS | 1/9n | | | | | 5.00 | | WV28 CHLOROBENZENE, BY GC/MS | | | | | | 5.00 | | WV29 ETHYL BENZENE, BY GC/MS | | | | | | 5.00 | | 1 | -:: | | | | | 10.U | | WV31 CARBON DISULFIDE, BY GC/MS | | | | | | 5.00 | | | : NG/L | | | | | 10.0 | | WV34 2-HEXANONE | NG/L | | | | | 10.U | | | ANALYSIS REQUEST DETAIL REPORT | | ACTIVITY: 2-ADF77 | | VALIDATED DATA | DATA | |-----------------------------------|--------------------------------|--|-------------------|---------------|----------------|------| | COMPOUND | NUITS 005 | 900 | 007 | J600 | 101 | | | WV35 4-MFTHVI -2-PENTANONE | : ng/L | | | | | 10.U | | WAS STABLE BY GC/WS | | | | | | 5.00 | | WV37 XVI FNFS TOTAL BY GC/MS | | | | | | 5.00 | | WVAD DICHI DROPROPYLENE TRANS-1.3 | | | | | | 5.00 | | SAMPI F NUMBER | | 900: | 200 | 600 | 101 | | | | NA ADF77 | ADF77 | ADF77 | ADF77 | ADF77 | | | | • • | <u>G</u> art. | STATE OF THE | ## ANALYSIS REQUEST DETAIL REPORT REPORT ACTIVITY: 2-ADF77 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | n.c | U.C | n.c | n.c | D. C | 0.0 | 0.0 | J. U. C |). U : | 0.0 | . n.c | 0.0 | Û.Ü | U. (| n. (|).U | . u . | 0.0 | n.: | | |----------|------------------------------|-----------------------------|-------------------------------|-----------------------------|---|---------------------------|-------------------------------------|-----------------------------------|---------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|------------------------|------------------------|---|-------------------------------------|--|--------------------------|--------------------------|------------------------|--|------------------------------|------------------------------|------------------------|--| | 103 | 10000 L | 20000.U | 15000.0 | 15000.U | 10000 . U | 5000 · U | 5000 · U | 5000. U | 5000 · U | 5000 · U | 500(| 5000 · U | 5000.U | 5000.U | 5000.U | 5000.U | 5000.U | 5000 · U | 5000 · U | 5000.U | 5000. U | 5000.U | 5000 · U | 5000 · U | 5000.U | 11000.0 | THE RESIDENCE OF THE PARTY T | | 102F | 10.U | 20.U | 15.0 | 15.U | 10.U | 5.00 | 13. | 63 | | UNITS | | 1/90 | 1/9n | . UG/L | 1/9n | 1/9n | | 1/9n | 1/9n | 1/9n | 1/9n | 1/9n | 1/9n | | 1/9n | | | 1/9n | 1/9n | ng/L | 1/90 | | | 1/9n | 1/9n | NG/L | | | COMPOUND | WVO3 CHLOROMETHANE, BY GC/MS | WVO4 BROMOMETHANE, BY GC/MS | WVOS VINYL CHLORIDE, BY GC/MS | WVOG CHLOROETHANE, BY GC/MS | WVO7 METHYLENE CHLORIDE (DICHLOROMETHANE) | WVO8 DICHLOROETHYLENE,1,1 | WVO9 DICHLOROETHANE, 1, 1, BY GC/MS | WV10 DICHLOROETHYLENE, TRANS,1,2- | WV11 CHLOROFORM, BY GC/MS | WV12 DICHLOROETHANE, 1, 2, BY GC/MS | WV13 TRICHLOROETHANE, 1,1,1-, BY GC/MS | WV14 CARBON TETRACHLORIDE, BY GC/MS | WV15 BROMODICHLOROMETHANE, BY GC/MS | WV16 DICHLOROPROPANE, 1,2, BY GC/MS | WV17 BENZENE. BY GC/MS | WV19 TRICHLOROETHYLENE | WV20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS | WV21 DIBROMOCHLOROMETHANE, BY GC/MS | WV22 TRICHLOROETHANE, 1, 1, 2-, BY GC/MS | WV24 BROMOFORM, BY GC/MS | WV25 TETRACHLOROETHYLENE | WV26 TOLUENE, BY GC/MS | WV27 TETRACHLOROETHANE,1,1,2,2, BY GC/MS | WV28 CHLOROBENZENE, BY GC/MS | WV29 ETHYL BENZENE, BY GC/MS | WV3O ACETONE, BY GC/MS | | | COMPOUND | UNITS | 102F | 103 | | |--|--------------|------|---------|--| | WV31 CARBON DISULFIDE, BY GC/MS : UG/I | : <u></u> :: | 5.00 | 5000 U | | | WV32 METHYL ETHYL KETONE (2-BUTANONE) | : ng/r | 10.0 | 10000.0 | | | WV34 2-HEXANONE | | 10.0 | 10000 U | | | WV35 4-METHYL-2-PENTANONE | | 10.U | 10000.U | | | WV36 STYRENE, BY GC/MS | | 5.00 | 5000.U | | | WV37 XYLENES, TOTAL, BY GC/MS | | 5.00 | 5000. U | | | WV40 DICHLOROPROPYLENE, TRANS-1,3 | 1/90 | 5.00 | 5000. U | | | ZZO1 SAMPLE NUMBER | .NA 102 | | 103 | | | ZZO2 ACTIVITY CODE | NA | | ADF77 | | | | | | | |